【面试题】+load 相关
+load
方法的调用顺序?
- 先调用类的
+load
方法;- 按照编译先后顺序 (Build Phases -> Compile Sources) 调用(先编译先调用);
- 调用子类的
+load
方法会先调用父类的;
- 然后调用分类的
+load
方法;- 按照编译先后顺序 (Build Phases -> Compile Sources) 调用(先编译先调用)。
为什么子类重写覆盖父类的 +load
方法后还会先调用父类的 +load
方法?
因为 +load
方法的调用不是通过 objc_msgSend
函数,而是通过获取方法地址直接调用。
(*load_method)(cls, @selector(load));
源码
调用流程
graph TB subgraph objc4 subgraph objc-os.mm A[_objc_init] end subgraph objc-runtime-new.mm C[load_images] D[prepare_load_methods] E[schedule_class_load] end subgraph objc-loadmethod.mm F[add_class_to_loadable_list] G[add_category_to_loadable_list] H[call_load_methods] I[call_class_loads] J[call_category_loads] K("(*load_method)(cls, @selector(load));") end end subgraph dyld B[_dyld_objc_notify_register] end A-->B B-->C C-->D C-->H D-->E E-->F E-->|"cls->getSuperclass()"|E D-->G H-->I H-->J I & J-->K
实现
/***********************************************************************
* _objc_init
* Bootstrap initialization. Registers our image notifier with dyld.
* Called by libSystem BEFORE library initialization time
**********************************************************************/
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
runtime_init();
exception_init();
#if __OBJC2__
cache_t::init();
#endif
_imp_implementationWithBlock_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
#if __OBJC2__
didCallDyldNotifyRegister = true;
#endif
}
//
// Note: only for use by objc runtime
// Register handlers to be called when objc images are mapped, unmapped, and initialized.
// Dyld will call back the "mapped" function with an array of images that contain an objc-image-info section.
// Those images that are dylibs will have the ref-counts automatically bumped, so objc will no longer need to
// call dlopen() on them to keep them from being unloaded. During the call to _dyld_objc_notify_register(),
// dyld will call the "mapped" function with already loaded objc images. During any later dlopen() call,
// dyld will also call the "mapped" function. Dyld will call the "init" function when dyld would be called
// initializers in that image. This is when objc calls any +load methods in that image.
//
void _dyld_objc_notify_register(_dyld_objc_notify_mapped mapped,
_dyld_objc_notify_init init,
_dyld_objc_notify_unmapped unmapped);
void
load_images(const char *path __unused, const struct mach_header *mh)
{
if (!didInitialAttachCategories && didCallDyldNotifyRegister) {
didInitialAttachCategories = true;
loadAllCategories();
}
// Return without taking locks if there are no +load methods here.
if (!hasLoadMethods((const headerType *)mh)) return;
recursive_mutex_locker_t lock(loadMethodLock);
// Discover load methods
{
mutex_locker_t lock2(runtimeLock);
prepare_load_methods((const headerType *)mh);
}
// Call +load methods (without runtimeLock - re-entrant)
call_load_methods();
}
void prepare_load_methods(const headerType *mhdr)
{
size_t count, i;
runtimeLock.assertLocked();
classref_t const *classlist =
_getObjc2NonlazyClassList(mhdr, &count);
for (i = 0; i < count; i++) {
schedule_class_load(remapClass(classlist[i]));
}
category_t * const *categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
for (i = 0; i < count; i++) {
category_t *cat = categorylist[i];
Class cls = remapClass(cat->cls);
if (!cls) continue; // category for ignored weak-linked class
if (cls->isSwiftStable()) {
_objc_fatal("Swift class extensions and categories on Swift "
"classes are not allowed to have +load methods");
}
realizeClassWithoutSwift(cls, nil);
ASSERT(cls->ISA()->isRealized());
add_category_to_loadable_list(cat);
}
}
/***********************************************************************
* prepare_load_methods
* Schedule +load for classes in this image, any un-+load-ed
* superclasses in other images, and any categories in this image.
**********************************************************************/
// Recursively schedule +load for cls and any un-+load-ed superclasses.
// cls must already be connected.
static void schedule_class_load(Class cls)
{
if (!cls) return;
ASSERT(cls->isRealized()); // _read_images should realize
if (cls->data()->flags & RW_LOADED) return;
// Ensure superclass-first ordering
schedule_class_load(cls->getSuperclass());
add_class_to_loadable_list(cls);
cls->setInfo(RW_LOADED);
}
/***********************************************************************
* add_class_to_loadable_list
* Class cls has just become connected. Schedule it for +load if
* it implements a +load method.
**********************************************************************/
void add_class_to_loadable_list(Class cls)
{
IMP method;
loadMethodLock.assertLocked();
method = cls->getLoadMethod();
if (!method) return; // Don't bother if cls has no +load method
if (PrintLoading) {
_objc_inform("LOAD: class '%s' scheduled for +load",
cls->nameForLogging());
}
if (loadable_classes_used == loadable_classes_allocated) {
loadable_classes_allocated = loadable_classes_allocated*2 + 16;
loadable_classes = (struct loadable_class *)
realloc(loadable_classes,
loadable_classes_allocated *
sizeof(struct loadable_class));
}
loadable_classes[loadable_classes_used].cls = cls;
loadable_classes[loadable_classes_used].method = method;
loadable_classes_used++;
}
/***********************************************************************
* add_category_to_loadable_list
* Category cat's parent class exists and the category has been attached
* to its class. Schedule this category for +load after its parent class
* becomes connected and has its own +load method called.
**********************************************************************/
void add_category_to_loadable_list(Category cat)
{
IMP method;
loadMethodLock.assertLocked();
method = _category_getLoadMethod(cat);
// Don't bother if cat has no +load method
if (!method) return;
if (PrintLoading) {
_objc_inform("LOAD: category '%s(%s)' scheduled for +load",
_category_getClassName(cat), _category_getName(cat));
}
if (loadable_categories_used == loadable_categories_allocated) {
loadable_categories_allocated = loadable_categories_allocated*2 + 16;
loadable_categories = (struct loadable_category *)
realloc(loadable_categories,
loadable_categories_allocated *
sizeof(struct loadable_category));
}
loadable_categories[loadable_categories_used].cat = cat;
loadable_categories[loadable_categories_used].method = method;
loadable_categories_used++;
}
/***********************************************************************
* call_load_methods
* Call all pending class and category +load methods.
* Class +load methods are called superclass-first.
* Category +load methods are not called until after the parent class's +load.
*
* This method must be RE-ENTRANT, because a +load could trigger
* more image mapping. In addition, the superclass-first ordering
* must be preserved in the face of re-entrant calls. Therefore,
* only the OUTERMOST call of this function will do anything, and
* that call will handle all loadable classes, even those generated
* while it was running.
*
* The sequence below preserves +load ordering in the face of
* image loading during a +load, and make sure that no
* +load method is forgotten because it was added during
* a +load call.
* Sequence:
* 1. Repeatedly call class +loads until there aren't any more
* 2. Call category +loads ONCE.
* 3. Run more +loads if:
* (a) there are more classes to load, OR
* (b) there are some potential category +loads that have
* still never been attempted.
* Category +loads are only run once to ensure "parent class first"
* ordering, even if a category +load triggers a new loadable class
* and a new loadable category attached to that class.
*
* Locking: loadMethodLock must be held by the caller
* All other locks must not be held.
**********************************************************************/
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
// 1. Repeatedly call class +loads until there aren't any more
while (loadable_classes_used > 0) {
call_class_loads();
}
// 2. Call category +loads ONCE
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
/***********************************************************************
* call_class_loads
* Call all pending class +load methods.
* If new classes become loadable, +load is NOT called for them.
*
* Called only by call_load_methods().
**********************************************************************/
static void call_class_loads(void)
{
int i;
// Detach current loadable list.
struct loadable_class *classes = loadable_classes;
int used = loadable_classes_used;
loadable_classes = nil;
loadable_classes_allocated = 0;
loadable_classes_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Class cls = classes[i].cls;
load_method_t load_method = (load_method_t)classes[i].method;
if (!cls) continue;
if (PrintLoading) {
_objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
}
(*load_method)(cls, @selector(load));
}
// Destroy the detached list.
if (classes) free(classes);
}
/***********************************************************************
* call_category_loads
* Call some pending category +load methods.
* The parent class of the +load-implementing categories has all of
* its categories attached, in case some are lazily waiting for +initalize.
* Don't call +load unless the parent class is connected.
* If new categories become loadable, +load is NOT called, and they
* are added to the end of the loadable list, and we return TRUE.
* Return FALSE if no new categories became loadable.
*
* Called only by call_load_methods().
**********************************************************************/
static bool call_category_loads(void)
{
int i, shift;
bool new_categories_added = NO;
// Detach current loadable list.
struct loadable_category *cats = loadable_categories;
int used = loadable_categories_used;
int allocated = loadable_categories_allocated;
loadable_categories = nil;
loadable_categories_allocated = 0;
loadable_categories_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Category cat = cats[i].cat;
load_method_t load_method = (load_method_t)cats[i].method;
Class cls;
if (!cat) continue;
cls = _category_getClass(cat);
if (cls && cls->isLoadable()) {
if (PrintLoading) {
_objc_inform("LOAD: +[%s(%s) load]\n",
cls->nameForLogging(),
_category_getName(cat));
}
(*load_method)(cls, @selector(load));
cats[i].cat = nil;
}
}
// Compact detached list (order-preserving)
shift = 0;
for (i = 0; i < used; i++) {
if (cats[i].cat) {
cats[i-shift] = cats[i];
} else {
shift++;
}
}
used -= shift;
// Copy any new +load candidates from the new list to the detached list.
new_categories_added = (loadable_categories_used > 0);
for (i = 0; i < loadable_categories_used; i++) {
if (used == allocated) {
allocated = allocated*2 + 16;
cats = (struct loadable_category *)
realloc(cats, allocated *
sizeof(struct loadable_category));
}
cats[used++] = loadable_categories[i];
}
// Destroy the new list.
if (loadable_categories) free(loadable_categories);
// Reattach the (now augmented) detached list.
// But if there's nothing left to load, destroy the list.
if (used) {
loadable_categories = cats;
loadable_categories_used = used;
loadable_categories_allocated = allocated;
} else {
if (cats) free(cats);
loadable_categories = nil;
loadable_categories_used = 0;
loadable_categories_allocated = 0;
}
if (PrintLoading) {
if (loadable_categories_used != 0) {
_objc_inform("LOAD: %d categories still waiting for +load\n",
loadable_categories_used);
}
}
return new_categories_added;
}