【面试题】+load 相关

+load 方法的调用顺序?

  • 先调用类的 +load 方法;
    • 按照编译先后顺序 (Build Phases -> Compile Sources) 调用(先编译先调用);
    • 调用子类的 +load 方法会先调用父类的;
  • 然后调用分类的 +load 方法;
    • 按照编译先后顺序 (Build Phases -> Compile Sources) 调用(先编译先调用)。

为什么子类重写覆盖父类的 +load 方法后还会先调用父类的 +load 方法?

因为 +load 方法的调用不是通过 objc_msgSend 函数,而是通过获取方法地址直接调用。

(*load_method)(cls, @selector(load));

源码

调用流程

graph TB
subgraph objc4
    subgraph objc-os.mm
        A[_objc_init]
    end
    subgraph objc-runtime-new.mm
        C[load_images]
        D[prepare_load_methods]
        E[schedule_class_load]
    end
    subgraph objc-loadmethod.mm
        F[add_class_to_loadable_list]
        G[add_category_to_loadable_list]
        H[call_load_methods]
        I[call_class_loads]
        J[call_category_loads]
        K("(*load_method)(cls, @selector(load));")
    end
end
subgraph dyld
    B[_dyld_objc_notify_register]
end

A-->B
B-->C
C-->D
C-->H
D-->E
E-->F
E-->|"cls->getSuperclass()"|E
D-->G

H-->I
H-->J

I & J-->K

实现

/***********************************************************************
* _objc_init
* Bootstrap initialization. Registers our image notifier with dyld.
* Called by libSystem BEFORE library initialization time
**********************************************************************/

void _objc_init(void)
{
    static bool initialized = false;
    if (initialized) return;
    initialized = true;
    
    // fixme defer initialization until an objc-using image is found?
    environ_init();
    tls_init();
    static_init();
    runtime_init();
    exception_init();
#if __OBJC2__
    cache_t::init();
#endif
    _imp_implementationWithBlock_init();
    
    _dyld_objc_notify_register(&map_images, load_images, unmap_image);

#if __OBJC2__
    didCallDyldNotifyRegister = true;
#endif
}
//
// Note: only for use by objc runtime
// Register handlers to be called when objc images are mapped, unmapped, and initialized.
// Dyld will call back the "mapped" function with an array of images that contain an objc-image-info section.
// Those images that are dylibs will have the ref-counts automatically bumped, so objc will no longer need to
// call dlopen() on them to keep them from being unloaded.  During the call to _dyld_objc_notify_register(),
// dyld will call the "mapped" function with already loaded objc images.  During any later dlopen() call,
// dyld will also call the "mapped" function.  Dyld will call the "init" function when dyld would be called
// initializers in that image.  This is when objc calls any +load methods in that image.
//
void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped);
void
load_images(const char *path __unused, const struct mach_header *mh)
{
    if (!didInitialAttachCategories && didCallDyldNotifyRegister) {
        didInitialAttachCategories = true;
        loadAllCategories();
    }

    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;
    
    recursive_mutex_locker_t lock(loadMethodLock);
    
    // Discover load methods
    {
        mutex_locker_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);
    }
    
    // Call +load methods (without runtimeLock - re-entrant)
    call_load_methods();
}
void prepare_load_methods(const headerType *mhdr)
{
    size_t count, i;

    runtimeLock.assertLocked();
    
    classref_t const *classlist = 
        _getObjc2NonlazyClassList(mhdr, &count);
    for (i = 0; i < count; i++) {
        schedule_class_load(remapClass(classlist[i]));
    }
    
    category_t * const *categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
    for (i = 0; i < count; i++) {
        category_t *cat = categorylist[i];
        Class cls = remapClass(cat->cls);
        if (!cls) continue;  // category for ignored weak-linked class
        if (cls->isSwiftStable()) {
            _objc_fatal("Swift class extensions and categories on Swift "
                        "classes are not allowed to have +load methods");
        }
        realizeClassWithoutSwift(cls, nil);
        ASSERT(cls->ISA()->isRealized());
        add_category_to_loadable_list(cat);
    }
}
/***********************************************************************
* prepare_load_methods
* Schedule +load for classes in this image, any un-+load-ed 
* superclasses in other images, and any categories in this image.
**********************************************************************/
// Recursively schedule +load for cls and any un-+load-ed superclasses.
// cls must already be connected.
static void schedule_class_load(Class cls)
{
    if (!cls) return;
    ASSERT(cls->isRealized());  // _read_images should realize

    if (cls->data()->flags & RW_LOADED) return;

    // Ensure superclass-first ordering
    schedule_class_load(cls->getSuperclass());

    add_class_to_loadable_list(cls);
    cls->setInfo(RW_LOADED); 
}
/***********************************************************************
* add_class_to_loadable_list
* Class cls has just become connected. Schedule it for +load if
* it implements a +load method.
**********************************************************************/
void add_class_to_loadable_list(Class cls)
{
    IMP method;

    loadMethodLock.assertLocked();

    method = cls->getLoadMethod();
    if (!method) return;  // Don't bother if cls has no +load method
  
    if (PrintLoading) {
        _objc_inform("LOAD: class '%s' scheduled for +load", 
                     cls->nameForLogging());
    }
  
    if (loadable_classes_used == loadable_classes_allocated) {
        loadable_classes_allocated = loadable_classes_allocated*2 + 16;
        loadable_classes = (struct loadable_class *)
            realloc(loadable_classes,
                              loadable_classes_allocated *
                              sizeof(struct loadable_class));
    }
  
    loadable_classes[loadable_classes_used].cls = cls;
    loadable_classes[loadable_classes_used].method = method;
    loadable_classes_used++;
}
/***********************************************************************
* add_category_to_loadable_list
* Category cat's parent class exists and the category has been attached
* to its class. Schedule this category for +load after its parent class
* becomes connected and has its own +load method called.
**********************************************************************/
void add_category_to_loadable_list(Category cat)
{
    IMP method;

    loadMethodLock.assertLocked();

    method = _category_getLoadMethod(cat);

    // Don't bother if cat has no +load method
    if (!method) return;

    if (PrintLoading) {
        _objc_inform("LOAD: category '%s(%s)' scheduled for +load", 
                     _category_getClassName(cat), _category_getName(cat));
    }
  
    if (loadable_categories_used == loadable_categories_allocated) {
        loadable_categories_allocated = loadable_categories_allocated*2 + 16;
        loadable_categories = (struct loadable_category *)
            realloc(loadable_categories,
                              loadable_categories_allocated *
                              sizeof(struct loadable_category));
    }

    loadable_categories[loadable_categories_used].cat = cat;
    loadable_categories[loadable_categories_used].method = method;
    loadable_categories_used++;
}
/***********************************************************************
* call_load_methods
* Call all pending class and category +load methods.
* Class +load methods are called superclass-first. 
* Category +load methods are not called until after the parent class's +load.
* 
* This method must be RE-ENTRANT, because a +load could trigger 
* more image mapping. In addition, the superclass-first ordering 
* must be preserved in the face of re-entrant calls. Therefore, 
* only the OUTERMOST call of this function will do anything, and 
* that call will handle all loadable classes, even those generated 
* while it was running.
*
* The sequence below preserves +load ordering in the face of 
* image loading during a +load, and make sure that no 
* +load method is forgotten because it was added during 
* a +load call.
* Sequence:
* 1. Repeatedly call class +loads until there aren't any more
* 2. Call category +loads ONCE.
* 3. Run more +loads if:
*    (a) there are more classes to load, OR
*    (b) there are some potential category +loads that have 
*        still never been attempted.
* Category +loads are only run once to ensure "parent class first" 
* ordering, even if a category +load triggers a new loadable class 
* and a new loadable category attached to that class. 
*
* Locking: loadMethodLock must be held by the caller 
*   All other locks must not be held.
**********************************************************************/
void call_load_methods(void)
{
    static bool loading = NO;
    bool more_categories;

    loadMethodLock.assertLocked();

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    void *pool = objc_autoreleasePoolPush();

    do {
        // 1. Repeatedly call class +loads until there aren't any more
        while (loadable_classes_used > 0) {
            call_class_loads();
        }

        // 2. Call category +loads ONCE
        more_categories = call_category_loads();
    
        // 3. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    objc_autoreleasePoolPop(pool);

    loading = NO;
}
/***********************************************************************
* call_class_loads
* Call all pending class +load methods.
* If new classes become loadable, +load is NOT called for them.
*
* Called only by call_load_methods().
**********************************************************************/
static void call_class_loads(void)
{
    int i;
  
    // Detach current loadable list.
    struct loadable_class *classes = loadable_classes;
    int used = loadable_classes_used;
    loadable_classes = nil;
    loadable_classes_allocated = 0;
    loadable_classes_used = 0;
  
    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Class cls = classes[i].cls;
        load_method_t load_method = (load_method_t)classes[i].method;
        if (!cls) continue; 

        if (PrintLoading) {
            _objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
        }
        (*load_method)(cls, @selector(load));
    }
  
    // Destroy the detached list.
    if (classes) free(classes);
}
/***********************************************************************
* call_category_loads
* Call some pending category +load methods.
* The parent class of the +load-implementing categories has all of 
*   its categories attached, in case some are lazily waiting for +initalize.
* Don't call +load unless the parent class is connected.
* If new categories become loadable, +load is NOT called, and they 
*   are added to the end of the loadable list, and we return TRUE.
* Return FALSE if no new categories became loadable.
*
* Called only by call_load_methods().
**********************************************************************/
static bool call_category_loads(void)
{
    int i, shift;
    bool new_categories_added = NO;
  
    // Detach current loadable list.
    struct loadable_category *cats = loadable_categories;
    int used = loadable_categories_used;
    int allocated = loadable_categories_allocated;
    loadable_categories = nil;
    loadable_categories_allocated = 0;
    loadable_categories_used = 0;

    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Category cat = cats[i].cat;
        load_method_t load_method = (load_method_t)cats[i].method;
        Class cls;
        if (!cat) continue;

        cls = _category_getClass(cat);
        if (cls  &&  cls->isLoadable()) {
            if (PrintLoading) {
                _objc_inform("LOAD: +[%s(%s) load]\n", 
                             cls->nameForLogging(), 
                             _category_getName(cat));
            }
            (*load_method)(cls, @selector(load));
            cats[i].cat = nil;
        }
    }

    // Compact detached list (order-preserving)
    shift = 0;
    for (i = 0; i < used; i++) {
        if (cats[i].cat) {
            cats[i-shift] = cats[i];
        } else {
            shift++;
        }
    }
    used -= shift;

    // Copy any new +load candidates from the new list to the detached list.
    new_categories_added = (loadable_categories_used > 0);
    for (i = 0; i < loadable_categories_used; i++) {
        if (used == allocated) {
            allocated = allocated*2 + 16;
            cats = (struct loadable_category *)
                realloc(cats, allocated *
                                  sizeof(struct loadable_category));
        }
        cats[used++] = loadable_categories[i];
    }

    // Destroy the new list.
    if (loadable_categories) free(loadable_categories);

    // Reattach the (now augmented) detached list. 
    // But if there's nothing left to load, destroy the list.
    if (used) {
        loadable_categories = cats;
        loadable_categories_used = used;
        loadable_categories_allocated = allocated;
    } else {
        if (cats) free(cats);
        loadable_categories = nil;
        loadable_categories_used = 0;
        loadable_categories_allocated = 0;
    }

    if (PrintLoading) {
        if (loadable_categories_used != 0) {
            _objc_inform("LOAD: %d categories still waiting for +load\n",
                         loadable_categories_used);
        }
    }

    return new_categories_added;
}